J. Biochem. 125, 1086-1093 (1999)

Sequence of the V. parahaemolyticus Gene for Cytoplasmic
N,N’-Diacetylchitobiase and Homology with Related Enzymes'

Michael H. Wu* and Roger A. Laine*1?

Departments of *Biological Sciences, and ' Chemistry, Louisiana State University and A&M College and The LSU
Agricultural Center, Baton Rouge, LA 70803, USA

Received February 13, 1999; accepted March 12, 1999

The nucleotide sequence of the gene encoding the cytoplasmic N,N’-diacetylchitobiase [EC
3.2.1.14] from Vibrio parahaemolyticus (ATCC #27969) has been determined. The deduced
peptide sequence of this unusual g-hexosaminidase surprisingly shows minimum evolu-
tionary relationship to two other reported N,N’-diacetylchitobiases from vibrios, except in
highly conserved regions which are also homologous to lysosomal g-hexosaminidases from
eukaryotes including humans. In contrast, the two other g-hexosaminidases from vibrios
with reported sequences are much more closely related to each other. This novel 85 kDa
cytoplasmic glycosyl hydrolase with restricted specificity participates in the high level
utilization of chitin-derived 2-deoxy-2-acetamido-p-glucose (GlcNAc) by vibrios as one of
two parallel pathways for the metabolism of N,N’-diacetylchitobiose [Bassler, B.L., Yu,C.,
Lee, Y.C., and Roseman, S. (1991) J. Biol. Chem. 266, 24276-24286]. These pathways use
chitin-binding proteins for the adherence of the bacterial chitinase to the substrate, and an
extracellular chitinase and a periplasmic chitodextrinase to produce N,N’-diacetylchito-
biose. The V. parahaemolyticus cytoplasmic N,N’-diacetyl-chitobiase reported herein
appears to be a unique protein, lacking a signal sequence, and genetically distant from other
known chitinoclastic 8- N,N’-diacetyl-hexosaminidases. This is consistent with its limited
substrate specificity to small GlcNAc terminated oligosaccharides and its cytoplasmic
rather than periplasmic localization.
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Two parallel pathways have been postulated in marine
vibrios for the catabolism of chitin, possibly comprising as
many as 6-10 enzymes and a number of chemotactic pro-
teins (I). In the common part of the pathway, chitin-bind-
ing proteins adhere to the substrate (2, 3), and extracel-
lular chitinase (4) and periplasmic chitodextrinase work
together to produce N,N’-diacetylchitobiose [(GlcNAc),]
(5). In one branch of the pathway, the glycosidase/PTS
system cleaves N,N’-diacetyl chitobiose to 2-deoxy-2-ace-
tamido-D-glucose (GlcNAc) in the periplasmic space via a
membrane bound chitobiase (5-7) after which GlcNAc is
transported and phosphorylated by the PTS (5). The
second branch, a parallel permease/glycosidase system,
resembles the Escherichia coli lac permease/S-galacto-
sidase system (8, 9), and utilizes an, as yet, unidentified
N,N’-diacetylchitobiose permease to transport the sub-
strate to the cytoplasm. The transported (GleNAc), is
cleaved by the cytoplasmic chitobiase reported here (10)
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and phosphorylated by an ATP-dependent N-acetyl-D-
glucosamine kinase (5, 11, 12). The cytoplasmic system
works independently of the PTS (5). This report provides
the nucleotide sequence and the deduced polypeptide
sequence of the gene encoding the cytoplasmic chitobiase
(EC 3.2.1.14]) from Vibrio parahaemolyticus (ATCC
#27969), and shows an ancient evolutionary divergence for
this unique #-hexosaminidase compared with periplasmic
chitobiases.

MATERIALS AND METHODS

Host Bacterial Strains, Vectors, and Phages—E. coli
strains DH5« and DH5aF’ were purchased from Gibco
Bethesda Research Laboratories (Gaithersberg, MD). E.
coli strain JM101, phagemid vectors pBluescript I KS+,
pBluescript I SK*, and the interference resistant helper
phages VCSM13 (kan’) and R408 were from Stratagene
(La dJolla, CA). The plasmid harboring the V. parahae-
molyticus (ATCC#27969) chitobiase gene, PC120, was
constructed in this laboratory and has been described
previously (10).

Enzymes, Chemicals, and Antibiotics—Restriction endo-
nucleases, T4 DNA ligase, and T4 DNA polymerase were
purchased from Gibco Bethesda Research Laboratories
(Gaitherberg, MD), New England Biolabs (Beverly, MA),
or United States Biochemicals (Cleveland, OH). The T7
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DNA polymerase DNA sequencing kit (Sequenase 2.0) was
from United States Biochemicals Corp. (Cleveland, OH).
#S-Deoxyadenosine 5 - [ @ -thio] -triphosphate was from Du
Pont-NEN (Boston, MA). Ampicillin was from Sigma
Chemical (St. Louis, MQO). Oligonucleotides used as se-
quencing primers were synthesized on an automated DNA/
RNA synthesizer (Applied Biosystems, Model abi 394) in
GeneLab, School of Veterinary Medicine, Louisiana State
University (Baton Rouge, LA).

Construction of Subclones for Sequencing—The chito-
biase gene harboring plasmid PC120 (10) was digested with
the restriction enzymes Pstl, Sacl, and HindIIl. The
1.6, 2.1, and 3.5kbp fragments were gel purified and
cloned into appropriate sites of pBluescript II SK* vector
for single strand DNA production. Insert orientations of the
clones were identified by digestion with appropriate
restriction enzymes that cut the inserts asymmetrically
(HindIII for the 2.1 kbp fragment and EcoRV for the 3.5
kbp fragment), and the clones thus obtained were named
SKS162, SKP21-1, SKP21-2, SKH35-1, and SKH35-2
(Fig. 1). The protocol for rescuing recombinant phagemid
using VCSM13 was from Stratagene (La Jolla, CA), except
that E. coli DH5aF was used instead of XL1-Blue, and
Luria Bertanic medium (LB medium) was used instead of
Super-Broth.

Sequence Analysis—Sequencing gel data were assembled
and analyzed using Staden’s algorithm (13), an integrated
part of the GCG software, Unix® version 8.0 (Genetic
Computing Group, Madison, WI). The identified chitobiase
open reading frame (ORF) and the predicted polypeptide
sequence were then used as primary query sequences to
search available nucleic acid and protein depository data-
bases. The secondary structures of chitobiases from V.
parahaemolyticus, other vibrios, as well as higher organ-
isms were predicted using GCG programs based on the
report of Chou and Fasman (14).

RESULTS

Nucleotide Sequence Determination—The sequencing
clones and the orientations of the inserts are shown in Fig.
1A. The two phagemids, SK21-1 and SK21-2, contain the
2.1 kbp Pstl fragments but in opposite orientations. Both
SKS162 and SKH351 overlap with the above two clones to
facilitate the assembly of the sequencing gel data. The
restriction map of PC120 as determined previously (10)
and from the sequence data is depicted in Fig. 1B. Using the
Staden (13) algorithm as part of the GCG package on the
Unix platform, a single ORF was identified from sequence
data from the clones shown in Fig. 1. The area sequenced
and the coding region of V. parahaemolyticus chitobiase are
also shown. The 47 amino acid residues at the amino
terminus of the polypeptide are located between the Pstl
and Sacl restriction sites, indicating that the expression of
the chitobiase gene on PC120 is driven by the V. para-
haemolyticus chitobiase gene promoter instead of the lac
promoter on pUC18, the parental cloning vector. The nu-
cleotide sequence and the deduced amino acid sequence of
the gene are shown in Fig. 2. The amino terminal sequence
of the polypeptide from Edman degradation (10) perfectly
matched that deduced from the DNA sequence, suggesting
the lack of a signal peptide at the amino terminus. This
agrees with the cytoplasmic localization of the enzyme.
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By attaching a signal peptide upstream of the first
initiator AUG methionine codon, the enzyme has been
shown to permeate the two membranes of Gram negative
E. coli (to be published elsewhere), further indicating that
the wild type chitobiase of V. parahaemolyticus is cytoplas-
mic. The molecular mass of the deduced 741 aa polypeptide
is 85 kDa, agreeing with that determined by SDS-PAGE
(10).

Sequence Homology with Other Chitobiases—The de-
duced polypeptide sequence of V. parahaemolyticus was
used as a query sequence to search the GenBank/EMBL
and Swiss-Prot genetic data bases using FASTA, a GCG
program based on the algorithm of Pearson and Lipman
(15). Limited homologies, aligning in a 60 amino acid area
of a composite map from residues 341-400, were found
between this enzyme and those of V. harveyi, an outer
membrane protein (7, 16), and V. vulnificus (17). Except
for lysosomal B8-N-acetylhexosaminidases from human
and rabbit, which cleave GlcNAc from a number of glyco-
sides and are related to each other (18), a remarkable
homology was found among 31 out of 930 amino acids to all
sequenced S-hexosaminidases in the composite map loca-
tions 296-325, 341-359, 380-400, and 458-465 (Fig. 3).
Especially interesting in this region is the arginine residue
at position 359 conserved in all enzymes listed except
lysosomal chitobiases from human and rabbit. It has been
shown (19) that Arg'’® and Arg®'! (aligned at position 359 in
Fig. 3) in the «- and S-subunits of human #-hexosamin-
idase, respectively, are “active” residues, part of the
catalytic sites, but do not participate in substrate binding.
This highly conserved region may be associated with the
enzyme active sites. Figure 3 also shows that periplasmic

A
8K8162 SKH351 7~ >
SKP21-1 >
<« SKP21-2
B
P Sc H P S
PC120
500 bp
-« —
—¥ . - < <
—
— —_— — —_—, —
—_— —_— — _—
Fig. 1. Restriction map and nucleotide sequencing strategy of

the sequenced region containing the N,N’-diacetylchitobiase
gene from V. parahaemolyticus. (A) Inserts in subclones used to
generate single stranded DNA for sequencing. Arrows represent
insert orientation relative to the chromosomal DNA fragment in
PC120 (10), arbitrarily determined as that of the lacZ’ on pUC18. (B)
Restriction sites used to generate the inserts shown above and the
sequencing strategy. Arrows below the restriction map are individual
sequencing gel data used in sequence assembly. The sequence
presented in this paper is boxed. The solid portion indicates the
chitobiase ORF. Only restriction sites used for subcloning are shown.
P, Pstl; S, Sall; Se, Sacl; H, HindIl.
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CTG GGT TGG GAA GAA GCA CAG CAT GGC GAC AAA GTC AGC AAA GAC ACA GTG ATC TAT TCG 1542 Fig. 2. Nucleotide sequence en-
Leu Gly Trp Glu Glu Ala Gln His Gly Asp Lys Val Ser Lys Agp Thr Val Ile Tyr Ser 500 coding the N,N’-diacetylchito-
TGG TTA AGC GAA GAA GCG GOG TTG AAC TGC GCG CGC CAA GGT TTC GAT GTG GTG CTA CAA 1602 lt’i‘:::%ﬁe”f ush‘(’)::“tz‘;e"wi.ly;
Trp Leu Ser Glu Glu Ala Ala Leu Asn s Ala Gln Gly Phe Val Val Leu Gln 520 : figure
& Arg v hsp strand (non-template strand) of the
CCT GCG CAA ACC ACC TAC TTA GAT ATG ACC CAA GAT TAC GCA CCA GAA GAA CCG GGC GTG 1662 DNA. Putative regulatory elements
Pro Ala Gln Thr Thr Tyr Leu Asp Met Thr Gln Asp Tyr Ala Pro Glu Glu Pro Gly val 540 and the amino terminal sequence of
the predicted pol; tide as deter-
GAT TGG GCT AAC CCA TTG QCG CTA GAA AAA GCT TAC AAC TAT GAA CCA CTC GCT GAA GIG 1722 'egdbyEipoygz;‘adat‘ion(IO)
Trp Ala Asn L .
Agsp Trp Ala Pro Leu Pro Leu Glu Lys Ala Tyr Asn Tyr Glu Pro Leu Ala Glu val 560 are underlined. Nucleotide num.
CCA GCC GAC GAT CCA ATA CGT AAA CGC ATT TGG GGC ATT CAA ACA GCA TTG TGG TGC GAA 1782  bering is based on the putative
Pro Ala Asp Asp Pro Ile Arg Lys Arg Ile Trp Gly Ile Gln Thr Ala Leu Trp Cys Glu 580 transcription start site (+1). —35
and —10: —35 and — 10 regions of
ATC ATC AAC ARC CAG TCT CGT ATG GAC TAC ATG GTC TTC CCG CGC TTA ACC GCA ATG GCA 1842 he promoter, respectively; SD:
Ile Ile Asn Asn Gln Ser Arg Met Asp Tyr Met Val Phe Pro Arg Leu Thr Ala Met Ala 600 Shine-Dalgarno site or ribosome
GAA GCA TGT TGG ACA GAC AAG CAA CAC CGA GAC TGG ACC GAC TAT TTA TCA CGT TTG AAA 1902  binding site (RBS). Note the three
Glu Ala Cys Trp Thr Asp Lys Gln His Arg Asp Trp Thr Asp Tyr Leu Ser Arg Leu Lys 620 consecutive translation Opal stop
codons (TGA) at the end of the ORF.
GGA CAC CTA CCG CTG CTT GAT TIG CAG GGA GTG AAT TAC CGT AAC CGT GGA AGT AAT ACA 1962
Gly His Leu Pro Leu Leu Asp Leu Gln Gly Val Asn Tyr Arg Asn Arg Gly Ser Asn Thr 640
GAG CAT TGT AGT AGA AGC ATC ACG CTT GAA GAG TTT TTA AAT TTT GGC TGC AGA CGC AGC 2022
Glu His Cys Ser Arg Ser Ile Thr Leu Glu Glu Phe Leu Asn Phe Gly Cys Arg Arg Ser 660
TTT GTA AAA AGG AAT ACA CAA ATG AAA TAC GGC TAT TTC GAT AAC GAG AAT CGT GAA TAC 2082
Phe Val lys Arg Asn Thr Gln Met Lys Tyr Gly Tyr Phe Asp Asn Glu Asn Arg Glu Tyr 680
GTC ATT ACT CGC CCT GAT GTA CCT GCT CCT TGG ACC AAC TAC CTA GGT ACA GAA AAA TTC 2142
Val Ile Thr Arg Pro Asp Val Pro Ala Pro Trp Thr Asn Tyr Leu Gly Thr Glu Lys Phe 700
TGT ACC GTT ATC TCG CAT AAC GCA GGT GGC TAT TCG TTC TAC AAC TCT CCA GAA TAC AAC 2202
Cys Thr Val Ile Ser His Asn Ala Gly Gly Tyr Ser Phe Tyr Asn Ser Pro Glu Tyr Asn 720
CGT GTT ACT AAG TTC CGT CCA AAT GCG ACA TTT CGA TCG CCC AGG ACA CTA OGT TTA CCT 2262
Arg Val Thr Lys Phe Arg Pro Asn Ala Thr Phe Arg Ser Pro Arg Thr Leu Arg Leu Pro 740
ACG TGA TGA TGA GACGGGAGATTACGGTCAATCTCTTGGCAACCAGTTGCAAAAGCCTAGACGAAGCGAACTACG 2337
Thr Ter Ter Ter 741
AAGTTCGTCATGGTTTIGTCGTACTCTAAATTCAAGTGTGAATACAGCGGCATTAGCGCAACCAAAACGCTCTTTGTACC 2416
AAAAGGCGAAGATGCAGAAATTTGGGATGTGGTCATCAAGAACACCTCTGACAAACCGCGTACGATCAGTGCATTCTCA 2495
TTTGTTGAGTTCTCGTTCAGCCACATTCAATCAGATAACCAAAACCACCAGATGTCTCTCTACTCTGCTGGTACGTCAT 2574
ACAACACAGGCGTGTTGAATACGACCTGTACTACAACACTAACGATTCGAAGGCTTCTACTACCTAGCGTCAACGTTTG 2653
ATCCAGATTCATACGACGGTCCAACGTGATAGCTTCTAGGTCTATACCGCGACGAAGCAAACCCACTAGCAGAGTAGAA 2732
CAGGTAAGTGTTTACACGCACAACGTGTTACACCACTGTGGCTTTGCACGCATT 2786

chitobiases from V. harveyi and V. vulnificus show exten-
sive homology with each other, while their homology with
the cytoplasmic chitobiase from V. parahaemolyticus is
much lower. This implies that cytoplasmic chitobiases from
vibrios took a very early and different line of evolution than
periplasmic chitobiases, and that these signal-sequence-
containing enzymes are more closely related to §-hexos-
aminidases from higher organisms.

The structural gene and the deduced amino acid sequence
of the V. parahaemolyticus chitobiase were progressively
piled up (20, 21) to those of chitobiases and £-hexosamin-
idases from other organisms including other vibrios and
higher organisms. The results are shown as a sequence
alignment (Fig. 3A) as well as a dendrogram (Fig. 3B).
Relationships among enzymes from these organisms were
obtained using either the DNA or amino acid sequences for
comparison (only the amino acid data are shown). The
clustering relationships as visualized in Fig. 3B show the
uniqueness of the cytoplasmic chitobiase from V. para-
haemolyticus among the chitobiases and 8-hexosaminidase
from all three vibrios.

Comparison of Secondary Structures among Chitobiases
from Different Organisms—The secondary structures of
chitobiases from various species, including human and
other vibrios, as predicted using the method of Chou and
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Fasman are shown in Fig. 4. Although very little amino acid
identity was found in the linear polypeptide sequences of
chitobiases from V. harveyi, V. vulnificus, and Homo
sapiens, chitobiases from these three organisms ranging
from prokaryotes to highly evolved eukaryotes, seem
similar in their general secondary structure. The Chou-
Fasman plots remarkably show nearly a mirror image in
overall patterns of secondary and turn structures between
human and the closely related pair of V. harveii and V.
vulnificus, although the amino/carboxyl terminus orienta-
tion is opposite. V. parahemolyticus, on the other hand,
shows a plot closer to that of the human enzyme in its
secondary patterning and amino/carboxy! orientation. This
indicates a common evolutionary ancestor for these en-
zymes among those organisms, as suggested for other
systems by Somerville and Colwell (17). In contrast with
these three chitobiases, the cytoplasmic chitobiase from V.
parahaemolyticus does not seem to follow the secondary
structural pattern, underscoring its separate line of evolu-
tion.

DISCUSSION

Roseman et al. showed that V. furnissii possesses a sepa-
rate N,N’-diacetylchitobiase with a cytoplasmic localiza-
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mmmhxb P QKTKTQ T YNFI NTFF VFP
ddhxa NI. PLDISNg ATFTIZIQNLF APLFI
vhechb sz INP, FEDKVI G HQ
vvehb 1P ME I ..DAINKLHK
vpchb 3 INPRILP| L .. N
551
hschb iEEgHVCTIA KVPFRGAPCS DAAGRQVPYK TIMKQINSSI
rnchb DVCAIA KVPFRGAPCS DAAGHQVPYR VIMKQVNSSV
hshxa LGGDEVD...
mmhxa LGGDEVD...
hshxb LGGDEVE. ..
mmhxb LGGDEVE. ..
ddhxa TGGDELV...
vhchb  FGGDEAKIIK
vvchb ETAG. .
vpchb ISTH. .
QVW YD..... NPQ SISLKATYIQ
HQVW YD..... 2 SISLKAAFVK
SFYIQTL LDIVSSYGKG YV.VWQEVFD
SFYIQTL LDIVSDYDKG YV VWQEVFD
SFYIQKV LDIIENINKG SI.VWQEVFD
SFYIKKI LEIISSLXKN SI.VWQEVED
ddhxa KMGFS.TT.. DAFQYJENNL DVTMKSINRT [I TWNDPID
vhchb . TDGTVERFA H[#P EV SKIVIEIKGIP NFQAWQ
vvchb APE DI NRI SHILDAK
vpchb . RH. ...

300
TTVATFGKYD
TTVAVFGKYD

DVKEVIEYAR
DVKEVIEYAR
D VIEYAR

VEEYAR
DIQEVVAYAK
DYVEIRXYAK
DYKEDAAYAS

QREGQICFET

550
WYGYDYTCLN
WYGYDYICLN
DF..... YLH
DF..... YLH
DQ..... FIH
DQ..... FIH
DN..... YFH
EAGA TWH
EGGQ DYH

..C LMF

650
NYRLRGIGMW
HYGLRGIGMW

NKV. ..
NKV. ..
DKA. . .
DKV....ELQ
YGV....QLN
K YSD.BEJAFA
HKALDASSLA

EAQHEDZVSK

.KIQ
.KVR
.KLA
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651
NANCLDYSGD
NANCLDYSDD
hshxa P IQ
19
VWKD
PGTVVEVWKS

PETLVQVWES

TENTRVNFWD

EGTPEQKALV
HGTPEQKALV
GGTQKQKQLF
EGSEKQKQLV
ISTNAEN. .0
GKGE IEAJPF
ATTGEKTHDF

.DP TREIRE

SVDRDGNGFT
MTDRMGAKIS

YV.DNTNLVP
YV .DSTNLVP
YV.DATNLTP

SNKLTSEIITF AYEJLSHFRC
mmhxa SSNLTTNIDF AFMZLSHFRC
hshxb SSKD D AYDRLTRHRC
ramhxb  SPKT N AY VHRC
ddhxa SAQSVNSVSL GHFTC
vhchb VGVEYSQON.. ..... SNLVD
vvchb EGITYTSNVD GHEGTTH
vpchb  GHLPLIGIRG VNYENRG

851
hschb .......... ...... . ...
rnchb ... ... 00 Lo,
hshxa .......... ... .. ...
mmhx& ... . e
hshxb  .......... cuvunnnn
mmhxb .......... ... . 0.,
ddhxa TKLSKSEIKL ILNK......
vhchb LEKSG RLPVIJGRAKVE DGKLAMNV PGﬁTLQYSLD GENWLTYAD)
vvchb RLPVLGAVIK NNILDVVT HG*AIQYSLD GKTWHKYDDT
vpchb VITRZDVPAP WTINYLGTEKJ CTIJISHNAGG YSFYNSPEYR

929

.......... VSRITEVK
GRAVEVLAK

IGYVSATGEK .
GRT
RLP T........

Fig. 3. Amino acid sequence pileup of chitoblases and 3-
hexosaminidases from 10 organisms. (A) Amino acid sequence
alignment. Numbers above the sequences represent positions in the
alignment, not those of individual polypeptides. Highlighted residues
are identical to those in vpchb. The boxed arginine residues at
position 359 are R'” of hshxa and R*'" of hshxb (19); (B) Dendrogram
of the aligned amino acid sequences. hschb, H. sapiens chitobiase
(18); mchb, Rattus norvegcus chitobiase (18); hshxa and hshxb, a-
and S8-polypeptides, respectively, of H. sapiens f-hexosaminidase
(28); mmhxa and mmhxb, a- and S-polypeptide, respectively, of
Mus musculus f-hexosaminidase (29, 30); ddhxa, Dictyostelium
discoideum f-hexosaminidase (31); vhehb, V. harveyi chitobiase (7);
vvchb, V. vulnificus 8-hexosaminidase; vpchb, V. parahaemolyticus
chitobiase, this study.
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tion that depends on a (GlcNAc), permease (1, 2, 5). We
isolated a similar N,N’-diacetylchitobiase from the cyto-
plasm of V. parahaemolyticus (10). The lack of signal
peptide at the amino terminus in the gene confirms this
assignment. It appears that a hydrophobic patch is absent
throughout the entire length of the polypeptide sequence.
In addition, a naturally secreted endochitinase has been
characterized and the gene cloned from V. parahaemoly-
ticus (4). The limited digest product of chitin cleavage by
this chitinase is N, N’-diacetylchitobiose, the substrate of
periplasmic and cytoplasmic N,N’-diacetylchitobiases. A
chitin binding protein that may facilitate V. parahaemoly-
ticus adherance to chitin has also been reported (3). The
involvement of a permease is supported by in vitro data
from V. furnigii (5). Complementation analysis (22)
showed that a lac permease defective E. coli strain (LE392,
lacY ™ mutant) carrying plasmids with chromosomal DNA
fragment from V. harveyi are able to hydrolyze o-nitro-
phenyl-D-galactoside (ONPG), implying that the putative
chitopermease is equivalent in function to the lacY gene
product and is able to translocate lactose across the cyto-
plasmic membrane of E. coli. Identification and character-
ization of the permease protein in V. parahaemolyticus will
establish the complete chitinoclastic pathway in this organ-
ism.

Although it has been shown that the PTS exists in V.
parahaemolyticus (23) and all vibrios tested (23, 24), the
periplasmic form of chitobiase has not yet been isolated
from V. parahaemolyticus (23).

It is worth noting that sequences in the —10 and —35
region of the V. parahaemolyticus chitobiase gene promoter
are nearly identical to the prokaryotic consensus promoter
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sequences (5-TATAAT-3" for —10 and 5 -TTGACA-3
for —35) (25, 26), especially in the — 35 region where the
V. parahaemolyticus chitobiase gene has a G instead of an
A as in the consensus sequence, suggesting the high expres-
sion of the gene driven by its own promoter. This agrees
with the high yield of the enzyme using PC120, the clone
with the chromosomal insert from V. parahaemolyticus. On
the other hand, the chitobiase level in V. parahaemolyticus
itself is at least 30-fold lower (Zhu, B.C., personal commu-
nication) than in PC120. One possibility is that the expres-
sion of the chitobiase gene is regulated in the original
organism but not when cloned into E. coli, although other
alternatives such as a higher gene dosage in E. coli carrying
PC120 may also play a role. In contrast to the chitin
degradation systems of V. harveyi and V. vulnificus, in
which catalytic and non-catalytic proteins are organized as
simple chi-operons (6, 22), the secreted chitinase and
cytoplasmic chitobiase genes in V. parahaemolyticus do not
seem to be in the same cistron, since both have their own
promoters and ribosome binding sites; nor are they in close
vicinity, since sequences 1,000 nt upstream and 500 nt
downstream of the chitobiase ORF do not overlap with the
chitinase gene (data not shown) or other sequences known
in the Vibrio chi operons. The regulatory effect involved in
the chitobiase gene of V. parahaemolyticus may be in trans.

Figure 3A reveals two regions highly conserved among all
chitobiases and hexosaminidases except for human and
rabbit lysosomal chitobiases, which are exoglycosidases
that split the GleNAc-g-D-(1-4)GlcNAc chitobiose core of
asparagine-linked glycoproteins (18, 27). It is highly likely
that amino acid residues in one or both of these regions
participate in the catalysis of their respective substrates,
especially the region from position 341-400 that includes
the catalytic arginine residues in the a- and S8-subunits of
human g-hexosaminidase (19).

This report shows the uniqueness of the cytoplasmic
chitobiase gene of V. parahaemolyticus compared with
other chitobiase genes cloned from vibrios or other organ-
isms. A cytoplasmic chitobiase activity was proposed by
Roseman’s group (5) and isolated and cloned by Zhu et al.
(10). The sequence and homology comparisons in this
report establish an evolutionary relationship among similar
enzymes and elaborate the extent of genetic investment in
chitin degradation by vibrios.

This work is published as part of the requirement for the Ph.D.
dissertation research of MHW.
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